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We have studied the effect of memory on the evolution of the prisoner’s dilemma game in square lattice
networks. Based on extensive simulations, we found that the density of cooperators was enhanced by an
increasing memory effect for most parameters. However, we also observed that the density of cooperators
decreased with an increased memory effect in the case of a large memory and moderate temptation. It is
interesting to note that memory makes cooperators immune from temptation. The strength of protection reaches
its maximal value only for a moderate memory effect.
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I. INTRODUCTION

The evolutionary prisoner’s dilemma game �PDG� has at-
tracted substantial attention over the past few decades �1�. In
this game, two agents must simultaneously select one of two
strategies: cooperation or defection. The prisoners receive
payoffs that are dependent on their choices. Selfish agents
will adapt their strategy to maximize their payoff. Game
theory involves the construction of many types of models
and analysis of these models using varied parameters. There-
fore, game theory serves as a powerful metaphor for simula-
tion of the interactions between individuals in many do-
mains, including biology, economy, and ecology.

In the PDG, mutual cooperation generates the highest re-
turn for the community. However, the Nash equilibrium state
is mutual defection because defection is a better choice for
the prisoner, regardless of the strategy of the other prisoner.
Importantly, in the real world, mutual cooperation is the most
commonly utilized strategy. Systems such as the PDG are
considered to be an important tool for studying the emer-
gence of cooperative behavior between selfish individuals
�2–4�. Nowak and May �5� introduced a spatial prisoner’s
dilemma game �SPDG� consisting of a two-state cellular au-
tomaton. In the general SPDG, the agents in the game play
the PDG with their network neighbors and get payoffs ac-
cording to a payoff matrix. The total payoff of each agent is
the sum of all payoffs in this step. An agent may then mimic
his neighbor’s strategy by comparing his payoffs in this step
with his neighbor’s payoffs. An important conclusion is that
spatial structure can promote the persistence of cooperation.
Because the interactions of an agent are limited to its local
neighbors, PDG models have been extensively explored in
the past few years �1,6–8�. In addition to spatial structure,
there are several mechanisms that may facilitate the emer-
gence and persistence of cooperation among populations.
Hamilton found that kin selection can favor cooperation �9�.
Axelrod’s model demonstrated that the tit for tat strategy
could sustain cooperation in systems of all players playing
the game together. The simulation performed by Szabó,
Vukov, and Szolnoki provided evidence that noise and irra-

tional choices affect the maintenance of cooperative behavior
�10�.

In the traditional SPDG model, the changing probability
of strategy is determined by the agents’ performance on one
step. In other words, people assume that the agents are short-
sighted and forgetful. In fact, when people make an impor-
tant decision, they generally consider the current situation
and their experiences. Therefore, the effect of memory
should be taken into account. Historical memory plays a key
role in the evolutionary game �11�. The purpose of this paper
is to evaluate whether memory enhances the density of co-
operators and protects the cooperators from the temptation.
We observed the maximum value of critical points from a
homogeneous cooperator to a mixed state of cooperator and
defector.

In this paper, we consider an evolutionary SPDG with the
memory effect in a square lattice, in which players update
their strategy by considering previous payoffs. The rules of
the game are explained in Sec. II. The simulations, which are
detailed in Sec. III, show that the evolution of the SPDG
depends on the magnitude of the memory effect and payoff-
matrix elements. Conclusions are drawn in the last section.

II. MODEL

In the traditional PDG, there are two players. Each player
chooses one of two strategies: cooperator �C� or defector
�D�. There are four combinations for the two players, �C ,C�,
�C ,D�, �D ,C�, and �D ,D�, which corresponded to payoffs
�R ,R�, �S ,T�, �T ,S�, and �P , P�. The rewards or punishments
for each player can be tabulated as 2�2 payoff matrices �see
Table I�.

Four elements in the payoff matrix satisfy the ranking
order T�R� P�S and the additional constraint T+S�2R
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TABLE I. The payoff matrix of the prisoner’s dilemma
game.

Player 1 �player 2� C D

C R �R� S �T�
D T �S� P �P�

PHYSICAL REVIEW E 78, 041129 �2008�

1539-3755/2008/78�4�/041129�5� ©2008 The American Physical Society041129-1

http://dx.doi.org/10.1103/PhysRevE.78.041129


for repeated interactions. As suggested by Nowak and May
�5�, the parameters in this paper are R=1, T=b, S=0, and
P=0. Our model preserves the essentials of the PDG and b is
the only tunable parameter.

Our study is based on systematic Monte Carlo �MC�
simulations on a square lattice network with periodic bound-
ary conditions. When we applied the PDG on the network,
the players were located on the nodes. In every MC step, the
players simultaneously play the PDG with their network
neighbors �only the first neighbors� and themselves. The sum
payoff of each player is the sum over all games. The evolu-
tionary process is governed by strategy imitation. In every
MC step, all agents may mimic their neighbors’ strategy.
Player i adopts a �randomly chosen� neighbor’s strategy �at
site j� with a probability that depends upon the payoff dif-
ference:

W =
1

1 + exp��Em�i� − Em�j��/��
, �1�

where � indicates the noise generated by the players, allow-
ing irrational choices �12,13�. In this work, we use �=0.1 for
all simulations. Em�i� and Em�j� are the total payoffs, which
contain the sum of payoffs at this MC step U and the cumu-
lative historical payoff. For each node i, there are two memo-
ries Mc�i , t� and Md�i , t� at step t. When node i is associated
with the strategy C and the sum payoff at this MC step is U,

Em�i� = U + Mc�i,t� ,

Mc�i,t + 1� = �Mc�i,t� + U�� ,

Md�t + 1� = Md�t�� , �2�

for this time step. When the node i is associated with strategy
D,

Em�i� = U + Md�i,t� ,

Mc�i,t + 1� = Mc�i,t�� ,

Md�i,t + 1� = �U + Md�i,t��� . �3�

Here, � is the memory factor and 0���1. Mc�i , t� and
Md�i , t� represent the historical payoffs of C and D, respec-
tively. The memory effect for each MC step declines with
time. In other words, the memories of the payoffs, Mc�i , t�
and Md�i , t�, will be lost as time passes. �=0 indicates that
there is no memory effect. As � nears 1, there exists an al-
most perfect memory effect in the model. Starting from a
random initial state with an equal fraction of C and D and
Mc�i ,0�=Md�i ,0�=0, we iterate the model with a synchro-
nized update.

III. SIMULATION RESULTS

Our simulations are carried out by varying b and �. The
results described in this paper are obtained from MC simu-
lations with a system size of 200�200, with the exception of
the results shown in Fig. 4. It is true that a network with

larger size will decrease the ensemble error, which is caused
by the finite scale of the network. We have simulated our
model with 100�100 and 400�400 systems. There is no
conspicuous difference between these networks. The results
in this paper are the average of 20 trials with various random
seeds. Repeating simulations with different random seeds
can also reduce the error. Therefore, the 200�200 system is
large enough. The transient time is varied from 20 000 to
80 000 MC steps. After the transient state, the system
reached a stable state, and the amplitudes of population fluc-
tuations were considerably smaller than the corresponding
average value.

To characterize the macroscopic behavior of the system,
we measure the density of C, fc first. Figure 1 shows the fc
on a square lattice as a function of b for several values of �.
We find that there are two thresholds of temptation, b. When
b�bc1, the networks in which only C can survive are in the
stable state. The density of C decreases monotonically with
increasing values of b for b�bc1. Movies that present how
the systems with network size of 240�240 evolve in 300
MC steps after a transient time for different b and � are
available online �14�. In these movies the C’s are presented
as black boxes and the D’s as red boxes. It is observed that
the agents who utilize the same strategies join together to
form complex patterns that continuously move and change
shape. These patterns develop because agents change their
strategies by learning from their neighbors. Furthermore, the
C’s who join together are more stable because they support
each other by earning payoffs from their C neighbors. For
b�bc2, the C strategies die out. Both the memory factors �
and � affect the critical point �10�. Recently, in Ref. �15�
Szabó, Vukov, and Szolnoki showed the �-b plane of
Newman-Watts networks. In contrast to �, � does not con-
spicuously affect bc1 or bc2 in this model. The main focus of
this paper is to evaluate how the memory effect � affects the
density of C and bc1. Determination of the �-bc1 and �-bc2
planes is beyond the scope of this paper. bc2 increases with �
monotonically; however, bc1 reaches its maximum value near
�=0.72, and bc1 tends toward 4 /3 as � approaches 0 or 1 �see
black squares in Fig. 2�. From Fig. 1, we find that the
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FIG. 1. �Color online� Density of cooperators, fc, as a function
of the payoff parameter b with various memory factors �.

QIN et al. PHYSICAL REVIEW E 78, 041129 �2008�

041129-2



memory effect enhances the density of C in most cases; how-
ever, the density of C decreases with increasing � only for
��0.72 and 1.75�b�1.8. It should be noted that our simu-
lations are consistent with those presented in Fig. 1 of Ref.
�12� for �=0 despite the fact that Szabó and Töke used the
asynchronized update law in their model. The mean-field re-
sults for six-point approximations �16� agree with the simu-
lation in �12� and our model in the case of �=0. We assume
that the six-point approximation includes the main features
of the two models. Importantly, the six-point approximation
does not contain a restriction of the update law. Therefore, it
is conjectured that the synchronized update does not play an
important role in the two models.

In comparision to the case of �=0, we know that enhance-
ment of the density of C is caused by Mc and Md. From the
above-mentioned definitions, the Mc and Md of one node are
determined by two factors: �1� the payoff income U of every
MC step and �2� whether the node maintains one strategy. Mc
or Md is aggravated if the node persists in C or D, respec-
tively. Figure 3 plots the average Mc and Md of all nodes as
a function of b. It should be noted that Mc is always larger
than Md. Therefore the memory effect almost always en-
hances fc in this model. For b�bc1, the networks include
only C. Every node can receive five payoffs at every MC
step and Mc is 5�� / �1−��. Then, with an increase of b, the
emergence of D reduces the value of C’s payoff for every
MC step and decreases the continuous accumulation of Mc.
As a result, Mc gradually decreases with b until C dies out
and Mc=0. In contrast to Mc, Md has a peak in the C-D
coexisting states. When D is outside the mixed region, Md is
equal to 0. D earns a payoff only by playing the game with
C. Therefore, Md is not equal to 0 in the C-D coexistence
region bc1�b�bc2. When b is a little bit larger than bc1 and
1− fc�1, D forms small isolated gangs. As discussed in �12�,
the behaviors of D gangs are considered as branching and
annihilating random walkers �17,18�. The D gangs undergo
four basic processes: random walk; an annihilation reaction
�two D gangs can unite�; death �one gang of D will die due

to the irrational choice�; and branching �one gang of D can
divided into two gangs�. Every D gang that obtains the high-
est payoff at every MC step is surrounded by cooperators.
However, the density of D is low, and random walking
breaks the continual accumulation of Md. Therefore, Md is
small. When D is dominant, the random walking of C gangs
does not deplete the accumulation of Md but the average
payoff of D decreases at each MC step. Thus Md is maxi-
mized when there is a compromise between the average pay-
off at each MC step and continual accumulation of Md.

In �12,15�, the authors discussed the critical exponents of
bc1 and bc2. Their MC simulations indicated a power-law
behavior, namely, fc	 �bc2−b�
 and 1− fc	 �b−bc1�
, and the
values of 
 agreed with the directed percolation �DP� expo-
nent. Grassberger and Janssen conjectured that all one-
component models with a single absorbing state belong to
the universality class of DP �19�. The value of critical expo-
nents should be independent of the details of dynamical rules
and dependent on the spatial dimension. In this paper, we
investigated these exponents in the context of different val-
ues of �. Figure 4 shows that 
, which ranged from 0.47
��=0� to 1.108 25 ��=0.9�, monotonically increases with �.
Therefore, the value of the critical exponent is not universal

FIG. 2. �Color online� bc1 as a function of memory factor � on
the square lattice. The data points depicted by squares �black� are
the result of MC simulations, and the data points depicted by tri-
angles �red� were derived from Eq. �6�.

FIG. 3. �Color online� Average payoffs for strategies C and D as
a function of the payoff parameter b for several values of the
memory factor �.
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but depends on the memory factor � in this model.
Considering that a persistent unchanged strategy at one

site leads to the accumulation history payoff, we investigated
the mobility of spatial patterns of �. Population mobility is a
central feature of real ecosystems: animals migrate, bacteria
run and tumble. Similar phenomena can be observed in a
rock-paper-scissors game �20�. Reichenbach, Mobilia, and
Frey observed that mobility has a critical influence on spe-
cies diversity. In this model, we find that the behavior of bc1
is caused by the decrease in mobility strategy. This means
that C resists temptation b by decreasing mobility. Therefore,
we introduce the time autocorrelation function of the strat-
egy:

g��,b,t� = �si�0�si�t�� , �4�

where si�t� is the strategy of player i at MC step t. When
player i chose C, si�t�=1. In contrast, si�t�=−1 for D. � �
denotes an average over all nodes in the network. Consider-
ing that g�� ,b , t� can be affected by the density of C and, in
order to ensure that g�� ,b , t� ranges from 0 to 1, we chose b
such that fc=0.5. This definition describes whether the
node’s recent strategy correlates with its strategy at later t
MC steps.

Figure 5�a� displays the attenuation of g�� , t� fc=0.5 with
time. It was found that g�� , t� fc=0.5 fits the form g�� , t� fc=0.5

=exp�−t /�����. One can regard � as the characteristic resi-
dence time of the unaltered strategy. We define th as the
number of MC steps for which one strategy was maintained
and assume that the characteristic residence time � and th
have a similar ratio:

th = �/A + B . �5�

Figure 5�b� shows � as a function of the parameter �. There
is a critical behavior at �	 �1−��−z, where the exponent is
z=2.22 with standard deviation 0.043.

Now we focus our attention on the behavior of bc1. When
b�bc1, C cannot resist temptation b and D appears. There-
fore, bc1 can be regarded as the ability of the model to pro-
tect C. As described in the discussion above, the D gangs
undergo four basic processes. When b=bc1 and 1− fc�1, the
annihilation process is rare, while the death and branching

processes are major activities. Therefore, D gangs become
stable if the branching rate is greater than the death rate. We
found that the single D in the branching process will have an
offspring and form D-D pairs �as shown in Fig. 6�. The D-D
pair plays an important role in the branching process of D

FIG. 4. Critical exponent 
 as a function of � of bc1. The error
bar in the figure presents the standard deviation. In order to sup-
press the statistical error in the critical regions, we use the system
size 600�600 for ��0.6, 800�800 for 0.75���0.6, and 1000
�1000 for ��0.75.

FIG. 5. �Color online� �a� Time autocorrelation function of strat-
egy for several values of �. �b� Characteristic time ���� as a function
of �. The red line is the fitting result of this figure �=4.29� �1
−��−2.22.

FIG. 6. Illustration of the D-D pair �nodes A and B� and neigh-
bor C �node C�. The black and white circles denote D and C, re-
spectively. A D-D pair indicates that both nodes are connected in
the networks by strategy D.
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gangs. When we discard the effect of noise, the total payoff
Em of each player in D-D pairs �nodes A and B in Fig. 6�
must be larger than the payoff of their neighbor C �node C in
Fig. 6�. Otherwise, the D gangs will eventually die. For ex-
ample, in the case of �=0, the total payoff of each player in
D-D pairs is 3b, and the total payoff of their neighbor C is 4.
Therefore, the threshold for a stable D is bc1=4 / �3b�=4 /3.
We suggest that the deviation of 4 /3 which was obtained in
our simulations was caused by noise.

The behavior of a stable D is subtle for ��0. Based on
the discussion above, the increase of th with � and th deter-
mines the player’s memory and total payoffs. Therefore, we
can use th to approximate bc1. When the th of the D-D pair is
N and we neglect the remnants Md, which accumulated many
MC steps ago, and assume that neighbor C can remain as C
indefinitely because of the dominance of C at b=bc1, we find
that

bc1 =
4

3�1 − th
N+1�

. �6�

In Fig. 2, we plot the results from Eq. �6� which are simi-
lar to the simulation results. We use A=27 and B=0.63 in
Eq. �5�.

IV. CONCLUSION

In this paper, we studied the ability of memory to protect
C from D in an evolutionary PDG in square lattice networks.

With an increase in the effect of memory, there is an increase
in the density of C in most cases. In compution of the auto-
correlation function, we used the characteristic residence
time to measure the mobility of a spatial pattern. We also
found that the mobility of a spatial pattern decreases with
increasing memory effect. Decreasing mobility induces a
maximum value of the critical coexistence point bc1 at �
=0.72. It is obvious that mobility plays an important role in
this model. The effect of memory on cooperative behaviors
may draw some attention in evolutionary games.

We have also applied this model to the Newman-Watts
small-world �NWSW� network �21�. The NWSW network is
a two-dimensional small-world network. We found that mod-
erate long-range links did not have an obvious qualitative
influence on our model.
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